
Floats & Ropes: a case study for formal

numerical program veri�cation?

Sylvie Boldo

INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

Abstract. We present a case study of a formal veri�cation of a numeri-
cal program that computes the discretization of a simple partial di�eren-
tial equation. Bounding the rounding error was tricky as the usual idea,
that is to bound the absolute value of the error at each step, fails. Our
idea is to �nd out a precise analytical expression that cancels with itself
at the next step, and to formally prove the correctness of this approach.

Keywords: rounding error, cancellation, formal proof, scienti�c compu-
tation, discretization of a partial di�erential equation.

1 Introduction

Given a program using �oating-point arithmetic, it is pretty hard to know the
�nal rounding error of the result. We are interested in proving numerical analysis
programs with a very high level of guarantee. We present here one of the simplest
example of scienti�c computation.

The basic property is that each �oating-point result is a correct rounding of
the exact real value: using the default rounding mode, the result is the �oating-
point number that is closest to the real value. This property is de�ned in the
IEEE-754 standard [1, 2] and all modern processors comply with it.

Nevertheless, even if each computation is correct, i.e. the best possible, there
is no guarantee that the �nal result after many such computations is still ac-
curate. There exist several methods for bounding the �nal error of a program,
including forward analysis [3], backward analysis [4] and interval arithmetic [5].
These well-known methods may or may not give useful results. However, when
they state a bad rounding error, it does not always imply the error is huge. It
is a known fact that �oating-point errors may cancel [3] but it is very di�cult
to handle. We use here a method that displays these cancellations and takes
advantage of them. This idea of exhibiting �oating-point errors cancellation has
been used by Even, Seidel and Ferguson in [6]. This article's technique is also
linked to static analysis [7], and provides more precision and more readability at
the cost of less genericity. This technique is also linked to expansions [8] as the
error is somewhat �computed� and used.

? This work was funded by the French national research organization (ANR), by the
CerPAN (ANR-05-BLAN-0281-04) and F

H
st projects (ANR-08-BLAN-0246-01).

2 Sylvie Boldo

To increase the trust in our results, we use deductive formal methods: we
machine-check all proofs using the Coq proof checker [9]. We use a high-level
formalization of �oating-point numbers [10, 11]. We use the Why platform for
veri�cation of C programs, that includes the Caduceus tool [12, 13]. The Ca-
duceus tool allows the user to precisely specify a C program. Each function is
annotated with pre-conditions (what the function requires from the inputs) and
post-conditions (what the function ensures at its end). The annotations and re-
quirements (pointer dereferencing for example) are then transformed into proof
obligations that have to be solved by proof assistants or decision procedures.

The Caduceus tool has �oating-point annotations [14] that allow to spec-
ify numerical programs. More precisely, each �oating-point number has a ghost
value called exact which does not su�er from rounding. This real value is then
computed with the same operations as the �oat value except that the ghost
operation is exact. The macro round_error(f) is then used for |f − exact(f)|.
More, each �oating-point number has another ghost value called model that the
user may set and which does not su�er from rounding. It is used to represent the
ideal result of the function (computed with in�nite sums, no discretization. . .).

Inside the annotations, all computations are exact. For example, this program
takes x as input and multiplies it by 2.

/*@ requires |x| < 2^^(1022)

@ ensures \result =2*x

@ && \round_error (\ result)=2*\ round_error(x) */

double multiply2(double x) { return 2*x; }

This function requires x to be small enough so that the multiplication does not
over�ow. It ensures that the result, denoted by the macro \result is equal to
the mathematical multiplication of x by 2. This is correct as the radix is 2.More,
the rounding error of the result is twice the rounding error of the input.

Section 2 describes the �rst example, which is a simpli�cation of the numer-
ical program. Section 3 tackles the discretization of the spread of acoustic waves
on a rope. Section 4 gives conclusive remarks and perspectives.

2 First Example: Linear Recurrence of Order 2

2.1 The Problem

We �rst present a linear recurrence of order 2. For some initial values u0 and u1,
we compute the following sequence:

un+1 = 2× un − un−1.

This may seem a silly idea as this sequence can be solved. Indeed, we know
that, mathematically, un = u0 + (u1 − u0) × n. Nevertheless, this example is
representative of the analytical error idea and corresponds rather nicely to our
real problem (Section 3 with a = 0).

Floats & Ropes: a case study for formal numerical program veri�cation 3

To compute uN , we assume that (ui)i≤N is bounded: for all i ≤ N , |ui| ≤ 1.
This is a very strong property that requires u0 and u1 to be small and close
enough one to another. This noteworthy limitation still corresponds to similar
properties in our real program.

We use this C program that we will later annotate:

double comput_seq(double u0 , double u1 , int N) {

int i;

double uprev , ucur , tmp;

uprev=u0; ucur =u1;

for (i=2; i<=N; i++) {

tmp = 2*ucur -uprev;

uprev = ucur;

ucur = tmp;

}

return ucur;

}

As the exact value of |un| is bounded by 1, if the errors of un−1 and un−2 are
not too big, then the error in the subtraction is less than 2−53. A natural error
analysis gives: let Ei = ui − exact(ui), then |Ei+1| ≤ 2 × |Ei| + |Ei−1| + 2−53.
Assuming u0 and u1 are error-free, this gives us that |EN | is roughly equal to
2N × 2−53. This error is very pessimistic and should be improved upon.

2.2 The Analytical Error

The idea is that the error should be signed. Taking its absolute value can only
lead to an exponential error. By keeping its sign, we have that:

Ei+1 = 2× Ei − Ei−1 + εi+1 with |εi+1| ≤ 2−53.

The key point is that we have now a subtraction between 2 × Ei and Ei−1.
At each step, the error will only be added a small value, therefore Ei−1 is close
to Ei, so that 2 × Ei − Ei−1 ≈ Ei. This allows us to get rid of the exponential
in the error bound. We now assume that u0 and u1 are not exact anymore. Of
course, the initial errors must not be too big: we assume the computed ui do not
exceed 2. More precisely, the annotations of the C function are given in Figure 1.

Theorem 1. If the pre-conditions of Figure 1 are satis�ed, then the post-con-

ditions of Figure 1 hold.

Proof. This proof deeply relies on the de�nition of the predicate mkp which is
a loop invariant inductively proved correct at each iteration update. The idea
is to keep track of both the exact value and the exact �oating-point error of up

and uc in order to bound the �nal error.
The predicate mkp is a property linking the inputs u0 and u1 and the state

of the program: the number of iterations n and the current un = ucur = uc and

4 Sylvie Boldo

/*@ requires 2 <= N <= 2^^25 -1 &&

@ \round_error(u0) + \round_error(u1) <= 1./(6*N) &&

@ \forall int k; 0 <= k <= N =>

@ |\exact(u0)+k*(\ exact(u1)-\exact(u0))| <= 1

@ ensures

@ \exact (\ result)==\ exact(u0)+N*(\ exact(u1)-\exact(u0))

@ && \round_error (\ result) <= N*(N+1)/2.*2^^(-53)

@ + N*(\ round_error(u0)+\ round_error(u1))

@*/

double comput_seq(double u0, double u1, int N) { ...

Fig. 1. Annotated C program for computing the linear recurrence of order 2

un−1 = uprev = up. For a given �oat f , let us denote by δ(f) = f − exact(f).
We have round_error(f) = |δ(f)|. We de�ne the predicate mkp by

mkp(u0, u1, uc, up, n) = ∃ε : N→ R,
∀i ∈ N, i ≤ n⇒ |εi| ≤ 2−53

∧ δ(up) =
∑n−1

i=0 (n− i) εi + (1− n) δ(u0) + n δ(u1)
∧ δ(uc) =

∑n
i=0(n+ 1− i) εi + (−n) δ(u0) + (n+ 1) δ(u1)

.

As soon as mkp is de�ned, the proof is rather easy. The exact value of ui is
computed by recurrence. The mkp property is proved the same way. At stage i
of the iteration, we de�ne a new εi which is the signed rounding error committed
during this iteration. As the multiplication is exact, εi = ui− (2× ui−1− ui−2).
This value can easily be bounded as this is the error of one single subtraction
such that the result is smaller than 2. Therefore |εi| ≤ 2−53 and

|EN | ≤
N(N + 1)

2
2−53 +N × (|δ(u0)|+ |δ(u1)|).

There is left to guarantee that |ui| ≤ 2, we �rst know, according to our
assumptions, that |exact(ui)| ≤ 1. So there is left to prove that |Ei| ≤ 1. And the
analytical expression of the error shows that the �oating-point error is smaller
than i(i + 1) × 2−54 + i (|δ(u0)|+ |δ(u1)|). We therefore need to bound N by
about 225 so that i(i+ 1)2−54 is bounded enough. Moreover, we have to bound
|δ(u0)|+ |δ(u1)| = round_error(u0) + round_error(u1) by 1/(6N). These values
are su�cient to guarantee that the error is bounded: |Ei| ≤ 1. Note also that
the rounding error bound could be improved to O

(
N2−53

)
. ut

3 Second Example: Rope

3.1 The Problem

The piece of code that is studied here is extracted from a numerical code by
F. Clément about acoustic waves [15]: given a rope attached at its two ends, we

Floats & Ropes: a case study for formal numerical program veri�cation 5

create a wave by applying a force (initializations). The rope then undulates, de-
pending on some mathematical equations that can be discretized and computed.

The mathematical point of view is that we are looking for the solution u from
R2 to R of the di�erential equation, knowing initial values of u and its derivative
for t = 0:

∂2u(x, t)
∂t2

− c2 ∂
2u(x, t)
∂x2

= 0.

The solution of the partial di�erential equation is approximated by the fol-
lowing piece of code that gives the position of the rope as times increases:

for (k=1; k<nk; k++) {

p[0][k+1] = 0.;

for (i=1; i<ni; i++) {

dp = p[i+1][k] - 2.*p[i][k] + p[i-1][k];

p[i][k+1] = 2.*p[i][k] - p[i][k-1] + a*dp;

}

p[ni][k+1] = 0.;

}

This is the main iteration of the program. Before that, p[. . .][0] and p[. . .][1]
are set but we are interested in this main loop. The value a is a parameter
computed previously. It is assumed that 0 < a / 1. Typically, a can be the
rounding of 0.9 or 0.99. At a given abscissa i and a given time k, the value
p[i][k] = pk

i is the position of the rope. The value i is bounded by the ends of
the rope 0 and ni. We compute the position of the rope between the initial time
0 and a maximum time nk.

We assume that (pk
i) is bounded. The reason is that (pk

i) represents values
that are supposed to be smaller than 1 (as the rope cannot �y away). These
model pk

i cannot be computed as they would need in�nite sums or absence
of discretizations. Nevertheless, the exact(pk

i) are near these model values so
we may assume they are smaller that 1.5. We assume nk is small enough to
guarantee that the �oating-point values |pk

i | are smaller than 2. As the error will
be proved proportional to k2, this roughly corresponds to nk ≤ 222.

3.2 The Pyramids

Let εk
i be the (signed) �oating-point error made when computing pk

i . From the
preceding program, we set

εk+1
i = pk+1

i − (2pk
i − pk−1

i + exact(a)× (pk
i+1 − 2pk

i + pk
i−1)).

As the |pk
i | are assumed to be smaller than 2, this value can be bounded.

To prove that, we use simple interval arithmetic: the idea is to bound each step
of the proof. We formally prove that |εk+1

i | ≤ 85 × 2−52 for a reasonable error
bound for a, that is to say |a− exact(a)| ≤ 2−49.

Given the de�nition of pk
i and the preceding discussion on the dependencies,

the �oating-point error Ek
i = pk

i − exact(pk
i) depends and only depends on the

following εl
j :

6 Sylvie Boldo

εk
i

εk−1
i−1 εk−1

i εk−1
i+1

εk−2
i−2 εk−2

i−1 εk−2
i εk−2

i+1 εk−2
i+2

. .
. ...

. . .

ε0i−k · · · ε0i · · · ε0i+k

This unfortunately means both that the error is at least proportional to k2,
and that the analytical error is a pyramidal double summation.

This is quite harder than the previous expression, as a double summation is
more di�cult to handle using a proof assistant. Unfortunately again, the error
is not the sum of all the εl

j of the pyramid. They have to be multiplied by a
well-chosen constant depending on their place in the pyramid. This constant is
far from trivial and is mathematically de�ned in the next subsection.

3.3 The α Sequence

Let us introduce α : (Z× Z)→ R de�ned by

α0
0 = 1 ∀i 6= 0, α0

i = 0

α1
−1 = α1

1 = ǎ α1
0 = 2(1− ǎ) ∀i 6∈ {−1, 0, 1}, α1

i = 0

αk
i = ǎ× (αk−1

i−1 + αk−1
i+1) + 2(1− ǎ)× αk−1

i − αk−2
i

where ǎ is the exact value of the �oating-point value a of the preceding subsection
(so ǎ is typically 0.9 or 0.99). The non-zero terms �t in a pyramid looking like
this for ǎ = 0.9, where lines are indexed by k and columns by i:

1
0.9 0.2 0.9

0.81 0.36 0.66 0.36 0.81

. .
. . . .

0.9k · · · 0.9k

It is easy to prove that αk
i = αk

−i, that α
k
k = ǎk and that if i < −k or

i > k, then αk
i = 0. More interesting, the sum �by line� has a surprisingly simple

expression:

Lemma 1.
+∞∑

i=−∞
αk

i = k + 1.

Proof. We have:
+∞∑

i=−∞
αk+1

i = 2ǎ
+∞∑

i=−∞
αk

i +2(1−ǎ)
+∞∑

i=−∞
αk

i−
+∞∑

i=−∞
αk−1

i = 2
+∞∑

i=−∞
αk

i−
+∞∑

i=−∞
αk−1

i .

Floats & Ropes: a case study for formal numerical program veri�cation 7

The sum by line veri�es the linear recurrence of Section 2. As
∑+∞

i=−∞ α0
i = 1

and
∑+∞

i=−∞ α1
i = 2, we have

+∞∑
i=−∞

αk
i = k + 1. ut

Lemma 2. αk
i ≥ 0

Proof. The demonstration was found out by M. Kauers and V. Pillwein.
If we denote by P the Jacobi polynomial, we have

αj
n =

n∑
k=j

(
2k
j + k

)(
n+ k + 1

2k + 1

)
(−1)j+kak = aj

n−j∑
k=0

P
(2j,0)
k (1− 2a)

Now the conjecture follows directly from the inequality of Askey and Gasper [16,

17], which asserts that
∑n

k=0 P
(r,0)
k (x) > 0 for r > −1 and −1 < x ≤ 1 (see Thm

7.4.2 in The Red Book [18]). ut

This assertion is not formally proved as it involves both many complex com-
putations and very high level mathematics. Moreover, this lemma can be ignored
at the price of a less tight bound (see Section 3.7).

3.4 The Analytical Error

Now, we claim that we can express the exact �oating-point error of pk
i in an

analytical way:

Theorem 2.

Ek
i = pk

i − exact(pk
i) =

k∑
l=0

l∑
j=−l

αl
j ε

k−l
i+j

Proof. Given the correct expression of Ek
i , the proof is a piece of cake. The

analytical expression exactly �ts the computation of pk+1
i and the sequence αk

i

is de�ned so that they cancel at the right time.
We prove the expression of Ek

i by induction on k. We assume the initializa-
tions ful�ll this requirement by choosing wisely ε0i and ε1i so that this expression
is correct for k = 0 and k = 1. We now assume the expression is correct for k−1
and k and we prove it for k + 1:

Ek+1
i = pk+1

i − exact(pk+1
i)

= pk+1
i − (2pk

i − pk−1
i + ǎ× (pk

i+1 − 2pk
i + pk

i−1))

+2(1− ǎ)(pk
i − exact(pk

i))
+ǎ(pk

i+1 − exact(pk
i+1) + pk

i−1 − exact(pk
i−1))

−(pk−1
i − exact(pk−1

i))
= εk+1

i + 2(1− ǎ)Ek
i + ǎ(Ek

i+1 + Ek
i−1)− Ek−1

i

8 Sylvie Boldo

After a lot of tiring but stupid computation (mostly summation games), we
have the equality:

Ek+1
i = εk+1

i + 2(1− ǎ)εk
i + ǎεk

i+1 + ǎεk
i−1 +

k−1∑
l=0

2(1− ǎ)αl+1
−l−1ε

k−1−l
i−l−1

+2(1− ǎ)αl+1
l+1ε

k−1−l
i+l+1 + ǎαl+1

l εk−1−l
i+l+1 + ǎαl+1

l+1 ε
k−1−l
i+l+2

+ǎαl+1
−l εk−1−l

i−l−1 + ǎαl+1
−l−1 ε

k−1−l
i−l−2 +

l∑
j=−l

αl+2
j εk−1−l

i+j

We also go the other way:

k+1∑
l=0

l∑
j=−l

αl
j ε

k+1−l
i+j = εk+1

i + 2(1− ǎ)εk
i + ǎεk

i+1 + ǎεk
i−1

+
k−1∑
l=0

αl+2
−l−2 ε

k−1−l
i−l−2 + αl+2

−l−1 ε
k−1−l
i−l−1 + αl+2

l+1 ε
k−1−l
i+l+1

+αl+2
l+2 ε

k−1−l
i+l+2 +

l∑
j=−l

αl+2
j εk−1−l

i+j

Let us compute ∆ = Ek+1

i −
∑k+1

l=0

∑l
j=−l α

l
j ε

k+1−l
i+j in order to prove this

value is 0. We use the facts that αi
i = ǎi and that αl

−l−1 = αl
l+1 = 0 and

αl+1
−l−2 = αl+1

l+2 = 0.

∆ =
k−1∑
l=0

(
εk−1−l

i+l+2 (ǎαl+1
l+1 − α

l+2
l+2) + εk−1−l

i−l−2 (ǎαl+1
−l−1 − α

l+2
−l−2)

+εk−1−l
i−l−1 (2(1− ǎ)αl+1

−l−1 + ǎαl+1
−l − α

l+2
−l−1)

+ εk−1−l
i+l+1 (2(1− ǎ)αl+1

l+1 + ǎαl+1
l − αl+2

l+1)
)

=
k−1∑
l=0

εk−1−l
i−l−1 (2(1− ǎ)αl+1

−l−1 + ǎαl+1
−l

−(2(1− ǎ)αl+1
−l−1 + ǎαl+1

−l + ǎαl+1
−l−2 − α

l
−l−1))

+εk−1−l
i+l+1 (2(1− ǎ)αl+1

l+1 + ǎαl+1
l

−(2(1− ǎ)αl+1
l+1 + ǎαl+1

l + ǎαl+1
l+2 − α

l
l+1))

=
k−1∑
l=0

(
εk−1−l

i−l−1 (−ǎαl+1
−l−2 + αl

−l−1)) + εk−1−l
i+l+1 (−ǎαl+1

l+2 + αl
l+1))

)
= 0

This rather complicated expression is proved correct. We can express the precise
�oating-point error with this double summation. ut

Floats & Ropes: a case study for formal numerical program veri�cation 9

3.5 ε Tossing

The previous proof assumes that the double summation is correct for all (i′, k′)
such that k′ < k. This would be correct if there was an in�nite set of i where pk

i

is computed. The i such that pk
i is computed are the integers between 0 and ni.

At the ends of the range, pk
i is exact because set to 0.

This is extremely unpleasant because this means our �ne recurrence fails
because of these extrema. The reason is that Ek

0 = 0, so Ek
0 is a priori not equal

to the expected double summation, except if we de�ne ε out of the [0;ni] range in
order to ensure that Ek

0 =
∑k

l=0

∑l
j=−l α

l
j ε

k−l
j = 0 and Ek

ni
= pk

ni
−exact(pk

ni
) =∑k

l=0

∑l
j=−l α

l
j ε

k−l
ni+j = 0.

0 ni

k

0 0

i 0

k

i−ni ni 2ni 3ni

Fig. 2. Initial ε and tossed ε

We de�ned εk
i in the preceding Section for all k and for 0 < i < ni as in

Figure 2. We de�ne εk
0 = 0. We then de�ne εk

i for all i, k in the following way:

� If i ≥ 0, then
• if (i÷ ni) mod 2 = 0, then εk

i = εk
i mod ni

,

• else εk
i = −εk

(ni−i) mod ni
,

� else εk
i = −εk

−i.

On the ranges [k×ni; (k+ 1)×ni], either we have ε (for even k), or we have
a negated mirrored ε (for odd k). Figure 2 illustrates the way ε is de�ned on
the whole range. This weird de�nition allows us to guarantee that the double
summation is exactly zero for i = 0 and i = ni. Indeed

Ek
0 =

k∑
l=0

l∑
j=−l

αl
j ε

k−l
j =

k∑
l=0

 −1∑
j=−l

αl
j ε

k−l
j + αl

0 ε
k−l
0 +

l∑
j=1

αl
j ε

k−l
j

=

k∑
l=0

 l∑
j=1

−αl
j ε

k−l
j + 0 +

l∑
j=1

αl
j ε

k−l
j

 = 0

This holds by symmetry of α and by antisymmetry of ε. The same kind of
proof holds for Ek

ni
= 0.

This proof trick is here only to pretend that E0 and Eni
are equal to 0. They

do not imply anything on the values of the Ei between these bounds.

10 Sylvie Boldo

3.6 Formal Proof

All the proofs described have been done and machined-checked using Coq. This
allows us to formally verify the annotations of the loop invariant and the �nal
error bound. The unproved assumptions are solved using axioms. The di�culty
did not lie in the �oating-point part. The only �oating-point proof is the 85×2−52

one which is basic interval arithmetic. The hard part (apart from �nding out the
analytical expression) is handling the double summation expressions. We handle

expressions such as

k∑
l=1

l+1∑
j=−l+1

αl
j−1 ε

k−l
i+j with the following expression:

(sum_f_z (fun l : Z => sum_f_z (fun j : Z

=> alpha a (j - 1) (Zabs_nat l) * eps (i + j) (k - l))

(- l + 1) (l + 1)) 1 k)%R.

This is rather cumbersome to handle, even if it is just following the pen and
paper proof. There is indeed nothing very technical or tricky in this formal proof,
except that the loop invariant must be de�ned using higher order logic.

All the annotated programs and the corresponding Coq developments descri-
bed in this article are available at http://www.lri.fr/~sboldo/gallery.html.

3.7 Final error

The analytical expression of the error is in itself interesting (it may lead to know
which error is dominating the others). Nevertheless, the main interest is to get
a not-too-overestimated �nal bound for the rounding error.

Theorem 3.∣∣Ek
i

∣∣ =
∣∣pk

i − exact
(
pk

i

)∣∣ ≤ 85× 2−53 × (k + 1)× (k + 2)

Proof. Let us bound the rounding error of pk
i , that is |Ek

i | =
∣∣∣∑k

l=0

∑l
j=−l α

l
j ε

k−l
i+j

∣∣∣.
We know that for all j and l, |εl

j | ≤ 85 × 2−52 and that
∑+∞

i=−∞ αl
i = l + 1

by Lemma 1. As the αk
i are nonnegative, then the error is easily bounded by

85× 2−52 ×
∑k

l=0 l + 1. ut

As the proof of the non-negativity of the αk
i is nontrivial and not formally

proved, the validity of this result may be put in question. Nevertheless, the αk
i are

the discretization of the di�erential equation with di�erent initializations (and
no rounding error). Therefore, as the |pk

i | are bounded, the |αk
i | are bounded the

same way. Therefore we may assume that |αk
i | ≤ 1.5, and this permits to prove

a bound on |Ek
i |:

Floats & Ropes: a case study for formal numerical program veri�cation 11

|Ek
i | =

∣∣∣∣∣∣
k∑

l=0

l∑
j=−l

αl
jε

k−l
i+j

∣∣∣∣∣∣ ≤
k∑

l=0

l∑
j=−l

∣∣αl
jε

k−l
i+j

∣∣ ≤ 85× 2−52 ×
k∑

l=0

l∑
j=−l

|αl
j |

≤ 85× 2−52 × 3
2

k∑
l=0

l∑
j=−l

1 = 255× 2−53
k∑

l=0

2 l + 1 < 2−45 × (k + 1)2

This is a slightly worse bound than the previous one, but it does not rely on
an result external from the study of the partial di�erential equation.

4 Conclusion

In order to prove the program entirely, the only di�culty left is the bounded-
ness of the discretized solution of the partial di�erential equation: we assumed
that |pk

i | ≤ 2. As we bound the �oating-point error, if nk ≤ 222 or so, it is
indeed enough to bound |exact(pk

i)| by 1.5. This last fact is due to the consis-
tency of the numerical scheme. This is a part of the global proof of the program,
that demonstrates that this programs computes an approximation of the spread
of acoustic waves on a rope. This mostly tackles Coq formalization of mathe-
matical knowledge and requires many new de�nitions and lemmas about scalar
product, symmetrical operators, Taylor series, f = O(g), O of functions of two
variables. . . and is therefore out of the scope of this paper.

This technique of the analytical error and precise �oating-point error can-
cellation coming with its formal proof is new. The reason is that it requires
very generic speci�cations as the loop invariant needs to be logically de�ned: it
states there exists a function ε that has such and such property. And Caduceus
allows us to express such a high-level property on a C program. We then use
Coq as a back-end to formally check the speci�cations. This Caduceus genericity
is an advantage compared to automatic methods that cannot express our loop
invariant.

We have shown how the analytical error technique increases the quality of
the �nal �oating-point error on two examples. Instead of the exponential error
we obtain by the usual methods, we get a quadratic error: this is indeed a
terri�c improvement. But the price is rather high as the user has to �nd out
the exact expression of the analytical error before proving it. The analytical
expression of the second example took us a few months to be worked out. We
did not �nd any method to infer the analytical error from the program. We plan
to develop methods to �nd out automatically analytical expressions or hints
towards analytical expressions in order to spread the use of this technique.

This technique cannot provide an error bound to all �oating-point programs
as it requires a readable expression for the analytical error simple enough to
handle in proofs. We also intend to study the class of programs to which this
technique applies.

12 Sylvie Boldo

Acknowledgements

We thank the participants of the CerPAN project, namely M. Mayero, J.-C.
Filliâtre and especially F. Clément for providing the C program, documentation
and many explanations. We also thank B. Salvy, M. Kauers and V. Pillwein for
their help (and proof!) on the non-negativity of the αk

i .

References

1. Stevenson, D., et al.: A proposed standard for binary �oating point arithmetic.
IEEE Computer 14(3) (1981) 51�62

2. IEEE: IEEE Standard for Floating-Point Arithmetic. IEEE Std. 754-2008 (August
2008) 1�58

3. Higham, N.J.: Accuracy and stability of numerical algorithms. SIAM (2002) Second
Edition.

4. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Prentice-Hall, Upper
Saddle River, NJ 07458, USA (1963)

5. Rump, S.M.: Fast and parallel interval arithmetic. BIT Numerical Mathematics
39(3) (1999) 534�554

6. Even, G., Seidel, P.M., Ferguson, W.E.: A parametric error analysis of Gold-
schmidt's division algorithm. arith 00 (2003) 165

7. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In Yi, K., ed.:
SAS. Volume 4134 of LNCS., Springer (2006) 18�34

8. Dekker, T.J.: A �oating point technique for extending the available precision.
Numerische Mathematik 18(3) (1971) 224�242

9. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq'Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer Verlag (2004)

10. Daumas, M., Rideau, L., Théry, L.: A generic library of �oating-point numbers and
its application to exact computing. In: 14th International Conference on Theorem
Proving in Higher Order Logics, Edinburgh, Scotland (2001) 169�184

11. Boldo, S.: Preuves formelles en arithmétiques à virgule �ottante. PhD thesis, École
Normale Supérieure de Lyon (November 2004)

12. Filliâtre, J.C., Marché, C.: Multi-Prover Veri�cation of C Programs. In: Sixth
International Conference on Formal Engineering Methods (ICFEM). Volume 3308
of LNCS., Seattle, Springer-Verlag (November 2004) 15�29

13. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program veri�cation. In Damm, W., Hermanns, H., eds.: 19th International Con-
ference on Computer Aided Veri�cation. LNCS, Berlin, Germany, Springer (2007)

14. Boldo, S., Filliâtre, J.C.: Formal veri�cation of �oating-point programs. In Ko-
rnerup, P., Muller, J.M., eds.: Proceedings of the 18th IEEE Symposium on Com-
puter Arithmetic, Montpellier, France (June 2007) 187�194

15. Bécache, E.: Étude de schémas numériques pour la résolution de l'équation des
ondes. ENSTA (September 2003)

16. Askey, R., Gasper, G.: Certain rational functions whose power series have positive
coe�cients. The American Mathematical Monthly 79 (1972) 327�341

17. Gasper, G.: Positive sums of the classical orthogonal polynomials. SIAM Journal
on Mathematical Analysis 8(3) (1977) 423�447

18. Andrews, G.E., Askey, R., Roy, R.: Special functions. Cambridge University Press,
Cambridge (1999)

